DISEASE EXOME, A POWERFUL DIAGNOSTIC TOOL: POST-MORTEM DIAGNOSIS OF DYSEKATEROSIS CONGENITA

JORGE PINTO-BASTO*, LIGIA S ALMEIDA†, FILIPA MELO‡, ANTONIO CARRIDO*, CRISTIANA BARBOSA*, SOFIA M PEREIRA§, RITA CERQUEIRA‡, PURIFICAÇÃO TAVARES‡

1 - CGC GENETICS LABORATORY OF CLINICAL GENOMICOS – PORTO, PORTUGAL.
2 - HOSPITAL CENTER TONDELA – VISEU, E.P.E. – VISEU, PORTUGAL.
* PRESENTING AUTHOR

CASE REPORT

DYSEKATEROSIS CONGENITA, DKC
1. Rare ectodermal dysplasia often presents with the classic triad of:
 - Nail dysplasia,
 - Skin pigmentation changes
 - Oral leukoplakia associated with a high risk of bone marrow failure (BMF) and cancer.

2. Onset and progression of manifestations of DKC varies:

 Mild
 DCK spectrum
 minimal physical findings with normal bone marrow function

 Severe
 diagnostic triad and early-onset BMF

3. Diagnosis:
 - Telomere length – cytogenetics analysis (ex: FISH)
 - Molecular Diagnosis – mutations known to cause DKC in:

 DKC1 TIN2F TERC TERT NHP2 NOP10 WRAP53 CTC1

 There are several variants of the disorder, each associated with a different pattern of inheritance.

We report on a deceased 60yo male with an undiagnosed systemic disease that presented with liver cirrhosis, pulmonary fibrosis, sick sinus syndrome and thrombocytopenia. Multiple tests had been previously performed with no diagnosis. DNA from post-mortem tissue was obtained and disease exome performed.

Exome sequencing has become a powerful diagnostic tool to identify the molecular etiology of genetic diseases in patients with unknown diagnosis.

METHODOLOGY

Disease exome was performed by capture of target regions using TruSightOne (Illumina) and subsequent NGS of a panel composed by 4833 clinically-relevant genes. Alignment and variant calling was performed using the Burrows-Wheeler Aligner (BWA) and Genome Analysis Toolkit (GATK), respectively. Variants with minor allele frequency below 1% (MAF<1%) were filtered and processed with bioinformatic analysis tools to assess its pathogenicity and potential to explain the clinical phenotype. Relevant variants were confirmed by Sanger sequencing (Figure 1).

GENETIC ANALYSIS

PRIORITIZATION OF DISEASE EXOME DATA

EXCLUSION OF:
- Low quality reads
- Non-genic, intronic and synonymous variants
- Variants in in-house variant database

INCLUSION OF:
- Variants with less than 1% in population databases
- Variants in exonic, splice-site and canonical splice site regions

Heterozygous variant in TERT gene
NM_198253.2: c.1492G>A (p.Gly498Arg)

Mutations in TERT gene, mostly missense, cause autosomal dominant dyskeratosis congenita (DKC type 2; MIM 613989) and autosomal recessive DKC (MIM 613989). Homozygous mutations in TERT gene cause a more severe phenotype than heterozygous mutations. However, there is no obvious genotype-phenotype correlation between mutations in TERT gene and DKC, possibly because mutations may be subject to inherited telomere length and other genetic and/or environmental factors. In the context of the clinical phenotype of this patient, this result supports the diagnosis of DKC type 2. Segregation studies were not possible as parents and sibs were not available for testing.

DISCUSSION AND CONCLUSION

We report a post-mortem diagnosis of DKC type 2 with a novel variant in the TERT gene, expanding the mutational spectrum of TERT-related DKC. Familial studies, even though not possible for this family, are particularly important as they would allow to evaluate the segregation of the phenotype with this variant, confirming its pathogenicity. Additionally, this result highlights the importance of molecular diagnosis, even post-mortem, as establishing the molecular etiology allows proper genetic counselling to at-risk relatives. Finally, this case illustrates the power of clinical exome sequencing in solving complex diagnostic cases in a clinical setting.

ABOUT THE PRESENTING AUTHOR

Jorge Pinto-Basto, CGC Genetics Clinical Director
Specialist in Clinical Genetics.
Chairman of the Board of the College of Medical Genetics of the Portuguese Medical Association.
Molecular Genetics and Clinical Genetics Laboratories Director of CGC Genetics.
Clinical: Medical Genetics, Dysmorphology, Neurogenetics and Genetic Counselling.
He has experience in the management of clinical molecular genetic laboratories and specialties in the clinical integration of genomic data (NGS).
Main fields of interest: NGS, genetics of rare diseases, dysmorphology, neurogenetics and variants evaluation.

www.cgcgenetics.com

DOWNLOAD THE POSTER